31 research outputs found

    Anonymes ; suivi de L'auteur, la plume, le texte

    Get PDF
    Anonymes est un recueil hĂ©tĂ©rogĂšne de nouvelles courtes sur les thĂšmes de la mĂ©lancolie et de l'exclusion. Chaque nouvelle est la dramatisation d'un instant prĂ©cis de la vie des personnages et ne sont contenues en elles que les actions qui mĂšnent Ă  l'aboutissement de ce moment. Ainsi, chaque texte se veut le captage instantanĂ© d'une expĂ©rience humaine. La langue employĂ©e est un quĂ©bĂ©cois correct : disons un français acadĂ©mique ponctuĂ© d'expressions et de tournures locales. Il y a peu de proximitĂ© entre les personnages et l'instance narrative, celle-ci se bornant au rĂŽle de tĂ©moin silencieux. La distance entre la narration et l'action vise Ă  produire un effet de dĂ©tachement vis-Ă -vis du sujet explorĂ©. Ce dĂ©tachement est nĂ©cessaire Ă  l'expĂ©rience de l'exclusion. Les lieux explorĂ©s sont ceux qui composent le paysage urbain : un parc, une ruelle, un bĂątiment dĂ©sertĂ©, un appartement. Les noms de ceux-ci ne sont pas dĂ©voilĂ©s, pas plus que ceux des personnages : autre maniĂšre de suggĂ©rer l'anonymat et la cruautĂ© que subissent les personnages.\ud L'auteur, la plume, le texte est une rĂ©flexion personnelle sur diffĂ©rents aspects du travail d'Ă©crivain de nouvelles. DivisĂ© en cinq parties, cet appareil rĂ©flexif propose une vision selon laquelle la force de la littĂ©rature rĂ©side dans l'engagement de l'auteur, tant au niveau social qu'artistique, que seul cet engagement permet Ă  la littĂ©rature de trouver sa lĂ©gitimitĂ©. Il met Ă©galement de l'avant l'idĂ©e que la littĂ©rature a pour rĂŽle d'ĂȘtre le vecteur d'une rĂ©alitĂ© nouvelle susceptible d'Ă©branler celle de celui ou de celle qui la lit. De plus, on y expose un questionnement sur la notion de destinataire de l'oeuvre littĂ©raire. L'idĂ©e mise de l'avant est que la littĂ©rature ne fonctionne pas selon un axe communicationnel standard. En effet, la littĂ©rature naĂźt d'une distortion de l'ordre de la communication (locuteur-message-destinataire). On y discute Ă©galement le rĂŽle du personnage dans les diffĂ©rents genres narratifs de la littĂ©rature, notamment le roman et la nouvelle. Quelques nuances apparaissent dans la fonction mĂȘme du personnage, autour duquel s'organise le roman, mais qui, dans la nouvelle, revĂȘt un rĂŽle plus ambivalent, davantage liĂ© aux autres Ă©lĂ©ments du texte. Enfin, l'appareil rĂ©flexif se questionne sur l'utilisation du langage dans la construction de la rĂ©alitĂ© du texte littĂ©raire selon le concept de grandiloquence dĂ©veloppĂ© par ClĂ©ment Rosset dans Le rĂ©el, traitĂ© d'idiotie (Les Ă©ditions de Minuit, Paris, 1977). ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Engagement,RĂ©alitĂ©, Destinataire, Nouvelle, MĂ©lancolie, Exclusion

    Troquer son nombril contre un peu d’humanitĂ©

    Get PDF

    Effect of evaporator length on the performance of a self-oscillating fluidic heat engine (SOFHE)

    Get PDF
    Abstract: This paper reports the effect of evaporator length on the performance of a self-oscillating fluidic heat engine (SOFHE). The SOFHE is a thermal energy harvester, when coupled with an electro-mechanical transducer that was proposed to power wireless sensors widely used in the Internet of Things (IoT). The mechanical power of the SOFHE is in the order of fraction of milliwatts, which makes it a promising power supply for a range of wireless sensors with the power requirements of 10s ”W. The SOFHE consists of a vapor bubble trapped by an oscillating liquid plug acting as a piston. The working principle of the SOFHE is similar to a singlebranch pulsating heat pipe. The engine is a small tube (inner diameter of 2 mm) filled with deionized water heated from a closed end and cooled from the opposite open end. By perturbing the equilibrium of the vapor bubble-liquid plug, oscillation start and are sustained by cyclic evaporationcondensation from a thin film in the vapor bubble. To characterize SOFHE’s mechanical power as a function of the evaporator length, measurements of pressure, oscillation amplitude, and frequency are conducted. As the evaporator length decreases (from 7 cm to 1 cm), the oscillation amplitude decreases (from 5.9 mm to 1.5 mm) while the frequency increases (from 27 Hz to 52 Hz). In theory, the power of SOFHE is proportional to the square of frequency and amplitude, so the trend in power is not obvious given the opposing effects. The results show a decrease in the mechanical power from 380 ”W to 180 ”W, which implies that the negative effect of the amplitude decrease dominates over the increase in frequency. A fourfold decrease was also observed in the net evaporation rate (from 1027 to 242 ”g/s), which explains why the amplitude decreases with the evaporator length. The research findings contribute to the design of both SOFHEs and pulsating heat pipes by suggesting that a longer heated zone improves the performance.Communication prĂ©sentĂ©e lors du congrĂšs international tenu conjointement par Canadian Society for Mechanical Engineering (CSME) et Computational Fluid Dynamics Society of Canada (CFD Canada), Ă  l’UniversitĂ© de Sherbrooke (QuĂ©bec), du 28 au 31 mai 2023

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Altimetry for the future: building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Position des différents instruments à la station CHIZ du Rénag, située à Chizé (Deux-SÚvres)

    No full text
    The picture shows the position of the co-located seismometer, the electrical cabinet and the VSAT antenna in relation to the GNSS antenna. The station CHIZ is located in ChizĂ© (Deux-SĂšvres) and is part of the Permanent National GNSS Network (RĂ©nag) integrated in RĂ©sif, a national research infrastructure dedicated to the observation and understanding of the structure and dynamics of the Earth. RĂ©sif is based on high technology observation networks, composed of seismological, geodetic and gravimetric instruments deployed in a dense manner all over the French territory. The data collected allow to study with a high spatio-temporal resolution the ground deformation, the superficial and deep structures, the seismicity at the local and global scale and the natural hazards, and more particularly the seismic ones, on the French territory. RĂ©sif is part of the European (EPOS - European Plate Observing System) and global systems of instruments allowing to image the interior of the Earth in its entirety and to study many natural phenomena.La photo montre la position du sismomĂštre colocalisĂ©, de l'armoire Ă©lectrique et de l'antenne VSAT par rapport Ă  l'antenne GNSS. La station CHIZ est situĂ©e Ă  ChizĂ© (Deux-SĂšvres) et est intĂ©grĂ©e au RĂ©seau National GNSS Permanent (RĂ©nag) intĂ©grĂ© Ă  RĂ©sif, une infrastructure de recherche nationale dĂ©diĂ©e Ă  l’observation et la comprĂ©hension de la structure et de la dynamique Terre interne. RĂ©sif se base sur des rĂ©seaux d’observation de haut niveau technologique, composĂ©s d’instruments sismologiques, gĂ©odĂ©siques et gravimĂ©triques dĂ©ployĂ©s de maniĂšre dense sur tout le territoire français. Les donnĂ©es recueillies permettent d’étudier avec une haute rĂ©solution spatio-temporelle la dĂ©formation du sol, les structures superficielles et profondes, la sismicitĂ© Ă  l’échelle locale et globale et les alĂ©as naturels, et plus particuliĂšrement sismiques, sur le territoire français. RĂ©sif s’intĂšgre aux dispositifs europĂ©ens (EPOS - European Plate Observing System) et mondiaux d’instruments permettant d’imager l’intĂ©rieur de la Terre dans sa globalitĂ© et d’étudier de nombreux phĂ©nomĂšnes naturels

    Station LROC du Rénag située à La Rochelle (Charente-Maritime)

    No full text
    The picture shows the GNSS instrumentation on the roof of a building in the port of La Pallice. These instruments are part of the station LROC located in La Rochelle (Charente-Maritime), which is part of the Permanent National GNSS Network (RĂ©nag) integrated in RĂ©sif, a national research infrastructure dedicated to the observation and understanding of the structure and dynamics of the internal Earth. RĂ©sif is based on high technology observation networks, composed of seismological, geodesic and gravimetric instruments deployed in a dense manner throughout France. The data collected allow to study with a high spatio-temporal resolution the ground deformation, the superficial and deep structures, the seismicity at the local and global scale and the natural hazards, and more particularly the seismic ones, on the French territory. RĂ©sif is part of the European (EPOS - European Plate Observing System) and global systems of instruments allowing to image the interior of the Earth in its entirety and to study many natural phenomena.On peut voir sur la photo l'instrumentation GNSS sur le toit d'un batiment du port de La Pallice. Ces instruments font partie de la station LROC situĂ©e Ă  La Rochelle (Charente-Maritime), qui est intĂ©grĂ©e au RĂ©seau National GNSS Permanent (RĂ©nag) intĂ©grĂ© Ă  RĂ©sif, une infrastructure de recherche nationale dĂ©diĂ©e Ă  l’observation et la comprĂ©hension de la structure et de la dynamique Terre interne. RĂ©sif se base sur des rĂ©seaux d’observation de haut niveau technologique, composĂ©s d’instruments sismologiques, gĂ©odĂ©siques et gravimĂ©triques dĂ©ployĂ©s de maniĂšre dense sur tout le territoire français. Les donnĂ©es recueillies permettent d’étudier avec une haute rĂ©solution spatio-temporelle la dĂ©formation du sol, les structures superficielles et profondes, la sismicitĂ© Ă  l’échelle locale et globale et les alĂ©as naturels, et plus particuliĂšrement sismiques, sur le territoire français. RĂ©sif s’intĂšgre aux dispositifs europĂ©ens (EPOS - European Plate Observing System) et mondiaux d’instruments permettant d’imager l’intĂ©rieur de la Terre dans sa globalitĂ© et d’étudier de nombreux phĂ©nomĂšnes naturels

    Position des différents instruments à la station CHIZ du Rénag, située à Chizé (Deux-SÚvres)

    No full text
    The picture shows the position of the co-located seismometer, the electrical cabinet and the VSAT antenna in relation to the GNSS antenna. The station CHIZ is located in ChizĂ© (Deux-SĂšvres) and is part of the Permanent National GNSS Network (RĂ©nag) integrated in RĂ©sif, a national research infrastructure dedicated to the observation and understanding of the structure and dynamics of the Earth. RĂ©sif is based on high technology observation networks, composed of seismological, geodetic and gravimetric instruments deployed in a dense manner all over the French territory. The data collected allow to study with a high spatio-temporal resolution the ground deformation, the superficial and deep structures, the seismicity at the local and global scale and the natural hazards, and more particularly the seismic ones, on the French territory. RĂ©sif is part of the European (EPOS - European Plate Observing System) and global systems of instruments allowing to image the interior of the Earth in its entirety and to study many natural phenomena.La photo montre la position du sismomĂštre colocalisĂ©, de l'armoire Ă©lectrique et de l'antenne VSAT par rapport Ă  l'antenne GNSS. La station CHIZ est situĂ©e Ă  ChizĂ© (Deux-SĂšvres) et est intĂ©grĂ©e au RĂ©seau National GNSS Permanent (RĂ©nag) intĂ©grĂ© Ă  RĂ©sif, une infrastructure de recherche nationale dĂ©diĂ©e Ă  l’observation et la comprĂ©hension de la structure et de la dynamique Terre interne. RĂ©sif se base sur des rĂ©seaux d’observation de haut niveau technologique, composĂ©s d’instruments sismologiques, gĂ©odĂ©siques et gravimĂ©triques dĂ©ployĂ©s de maniĂšre dense sur tout le territoire français. Les donnĂ©es recueillies permettent d’étudier avec une haute rĂ©solution spatio-temporelle la dĂ©formation du sol, les structures superficielles et profondes, la sismicitĂ© Ă  l’échelle locale et globale et les alĂ©as naturels, et plus particuliĂšrement sismiques, sur le territoire français. RĂ©sif s’intĂšgre aux dispositifs europĂ©ens (EPOS - European Plate Observing System) et mondiaux d’instruments permettant d’imager l’intĂ©rieur de la Terre dans sa globalitĂ© et d’étudier de nombreux phĂ©nomĂšnes naturels

    Station LROC du Rénag située à La Rochelle (Charente-Maritime)

    No full text
    The picture shows the GNSS instrumentation on the roof of a building in the port of La Pallice. These instruments are part of the station LROC located in La Rochelle (Charente-Maritime), which is part of the Permanent National GNSS Network (RĂ©nag) integrated in RĂ©sif, a national research infrastructure dedicated to the observation and understanding of the structure and dynamics of the internal Earth. RĂ©sif is based on high technology observation networks, composed of seismological, geodesic and gravimetric instruments deployed in a dense manner throughout France. The data collected allow to study with a high spatio-temporal resolution the ground deformation, the superficial and deep structures, the seismicity at the local and global scale and the natural hazards, and more particularly the seismic ones, on the French territory. RĂ©sif is part of the European (EPOS - European Plate Observing System) and global systems of instruments allowing to image the interior of the Earth in its entirety and to study many natural phenomena.On peut voir sur la photo l'instrumentation GNSS sur le toit d'un batiment du port de La Pallice. Ces instruments font partie de la station LROC situĂ©e Ă  La Rochelle (Charente-Maritime), qui est intĂ©grĂ©e au RĂ©seau National GNSS Permanent (RĂ©nag) intĂ©grĂ© Ă  RĂ©sif, une infrastructure de recherche nationale dĂ©diĂ©e Ă  l’observation et la comprĂ©hension de la structure et de la dynamique Terre interne. RĂ©sif se base sur des rĂ©seaux d’observation de haut niveau technologique, composĂ©s d’instruments sismologiques, gĂ©odĂ©siques et gravimĂ©triques dĂ©ployĂ©s de maniĂšre dense sur tout le territoire français. Les donnĂ©es recueillies permettent d’étudier avec une haute rĂ©solution spatio-temporelle la dĂ©formation du sol, les structures superficielles et profondes, la sismicitĂ© Ă  l’échelle locale et globale et les alĂ©as naturels, et plus particuliĂšrement sismiques, sur le territoire français. RĂ©sif s’intĂšgre aux dispositifs europĂ©ens (EPOS - European Plate Observing System) et mondiaux d’instruments permettant d’imager l’intĂ©rieur de la Terre dans sa globalitĂ© et d’étudier de nombreux phĂ©nomĂšnes naturels

    Note de Lecture : ISAYEV, Elena, Migration, Mobility and Place in Ancient Italy , Cambridge, Cambridge University Press, 2017, 542p. (Introduction, chap. 1,2,3)

    No full text
    Étienne Poirier (MaĂźtrise, UniversitĂ© du QuĂ©bec Ă  MontrĂ©al) Auteure et Introduction Elena Isayev en visite en Turquie, 2008Mitchank - wikipĂ©dia Elena Isayev est une historienne britannique qui se spĂ©cialise dans l’histoire migratoire, se concentrant sur la Rome antique. L’histoire migratoire est un domaine historique encore peu dĂ©veloppĂ© aujourd’hui. Au cours de sa carriĂšre, Isayev a grandement contribuĂ© Ă  faire avancer ce sujet. Elle a notamment donnĂ© la confĂ©rence “The Sky is Hidden: on th..
    corecore